Pancreatitis and Hyperbaric Oxygen Therapy

Pancreatitis is an inflammatory disease that can be mild/subclinical, acute, severe (systemic complications) or chronic (permanent disease). Severe pancreatitis can be associated with peripheral and systemic secondary alterations that can lead to severe systemic disease and even multi-organ failure. Acute pancreatitis can be successfully treated and the pancreas does have a good healing reserve and regeneration capacity, if the acute syndrome is properly managed. Pancreatitis in domestic small animals has many potential causes and predisposing factors including idiopathic to dietary to genetic to traumatic etiologies. Signs vary depending on the stage of disease and degree of any systemic involvement.

The table below summarizes the beneficial effects of hyperbaric oxygen therapy in the treatment of acute pancreatitis. As with many other diseases, early treatment generally produces the best results. Hyperbaric oxygen is used on conjunction with other conventional therapies for the best outcome. Hyperbaric oxygen reduces morbidity and shortens hospitalization associated with acute pancreatitis.

<table>
<thead>
<tr>
<th>Characteristics of Pancreatitis</th>
<th>Benefits of Hyperbaric Oxygen Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcirculatory alterations</td>
<td>Supports microvascular health and vessel integrity</td>
</tr>
<tr>
<td>Tissue hypoxia</td>
<td>Increased tissue oxygenation, ↓ hypoxia</td>
</tr>
<tr>
<td>Tissue hypoxia, acidosis</td>
<td>Reduces tissue CO2 and lactate</td>
</tr>
<tr>
<td>Tissue edema</td>
<td>Tissue edema reduction</td>
</tr>
<tr>
<td>Ischemia-reperfusion disease</td>
<td>↓ hypoxia, ↓ neutrophil adhesion to venules</td>
</tr>
<tr>
<td>↓ red cell density and velocity in capillaries</td>
<td>Increased deformability of RBCs</td>
</tr>
<tr>
<td>Mitochondrial damage & oxidant release (ROSs) reduced peripheral anti-oxidants</td>
<td>Decrease tissue reactive oxygen species, increase endogenous anti-oxidants</td>
</tr>
<tr>
<td>Local and systemic inflammation</td>
<td>Anti-inflammatory</td>
</tr>
<tr>
<td>Recruitment of WBCs and ↑ cytokine production</td>
<td>Reduces neutrophil chemotaxis and cytokine production</td>
</tr>
<tr>
<td>Activation of coagulation cascade</td>
<td>Reduces platelet aggregation</td>
</tr>
<tr>
<td>Potential for bacterial translocation</td>
<td>Bacteriostatic and/or bacteriocidal</td>
</tr>
<tr>
<td>Hypoxia impairs neutrophilic bacterial killing</td>
<td>Restores optimal oxygen concentrations for neutrophil phagocytosis</td>
</tr>
<tr>
<td>Tissue cell death/necrosis</td>
<td>Reduces/blocks apoptosis</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>Analgesic</td>
</tr>
</tbody>
</table>

Pathophysiologic changes in pancreatitis
1. decreased secretion of pancreatic juices initially
2. co-localization of zymogen granules and lysozymes → activation of trypsinogen to trypsin → activates more trypsinogen and other zymogens → local damage with edema, bleeding, inflammation, necrosis, peri-pancreatic fat necrosis.
3. Inflammatory process → recruitment of WBCs and cytokine production
4. Activated enzymes and cytokines circulate → distant complications generalized inflammation, peritonitis, DIC, pancreatic encephalopathy, hypotension, other organ disease.
Activation of pro-inflammatory cytokines IL-10 and 11
Inducible transcription factor NF-kB, TNFa, IL-6 & 8, substance P, IL-1 → generalized neutrophil and monocyte activation → **edema & hypoxia.**

5. **increased capillary permeability**, decreased splanchnic blood flow, **decreased pancreatic perfusion**, decreased red cell density and red cell velocity in capillaries and venules → **reduced capillary perfusion.**

6. **Bacterial translocation** from inflamed gut

7. **Mitochondrial damage** and **oxidant release** perpetuates pancreatitis

 Increased myeloperoxidase, thiobarbituric acid reactive substances, protein carbonyl

 Reduced peripheral antioxidants

8. **Activation of the coagulation cascade**
 Activation of platelet activating factor
 Increase in c-reactive protein in dogs

9. **alterations in microcirculation**

10. **IR disease**

11. leukocyte and cytokine activation

Beneficial Effects of HBOT

1. anti-inflammatory - reduces levels of inflammatory mediators
2. Increased tissue oxygenation
3. Increased deformability of RBCs
4. Evidence that HBOT decreases ROS's in the tissue
5. Reduce hemodynamic derangement in severe infections and inflammation.
6. Reduction in cytokine release by activated inflammatory cells.
 HBO reduces release of TNF-a and IL-6 in animal models of pancreatitis
7. **Bacteriostatic and bacteriocidal (anaerobes) for some bacteria**
 Pressure may slows bacterial replication
 Leukocyte bacterial killing substantially impaired in low oxygen tensions, increases the phagocytic ability of WBC

8. **Restores optimal oxygen tensions in diseased tissues**
9. **Reduces neutrophil chemotaxis**
10. **Reduces tissue level of CO2 and lactate**

Application of HBOT in animals

Hyperbaric protocols – small animals

1. Either 30min @10-14psi day 1 depending on chest, etc. sometimes treat twice the first day if severe/necrotizing. Use **30@14.7** once a day for about 2-3 d after that.
2. **Treatment initiation** – As with most diseases, early initiation of treatment is usually met with the best results.
Bibliography

